
World Wide Web
DOI 10.1007/s11280-015-0341-5

Tracking frequent items over distributed
probabilistic data

Yongxin Tong ·Xiaofei Zhang ·Lei Chen

Received: 23 October 2014 / Revised: 18 December 2014 / Accepted: 5 March 2015
© Springer Science+Business Media New York 2015

Abstract Tracking frequent items (also called heavy hitters) is one of the most funda-
mental queries in real-time data due to its wide applications, such as logistics monitoring,
association rule based analysis, etc. Recently, with the growing popularity of Internet of
Things (IoT) and pervasive computing, a large amount of real-time data is usually collected
from multiple sources in a distributed environment. Unfortunately, data collected from each
source is often uncertain due to various factors: imprecise reading, data integration from
multiple sources (or versions), transmission errors, etc. In addition, due to network delay
and limited by the economic budget associated with large-scale data communication over a
distributed network, an essential problem is to track the global frequent items from all dis-
tributed uncertain data sites with the minimum communication cost. In this paper, we focus
on the problem of tracking distributed probabilistic frequent items (TDPF). Specifically,
given k distributed sites S = {S1, . . . , Sk}, each of which is associated with an uncertain
databaseDi of size ni , a centralized server (or called a coordinator) H , a minimum support
ratio r , and a probabilistic threshold t , we are required to find a set of items with minimum
communication cost, each item X of which satisfies Pr(sup(X) ≥ r × N) > t , where
sup(X) is a random variable to describe the support of X and N = ∑k

i=1ni . In order to
reduce the communication cost, we propose a local threshold-based deterministic algorithm
and a sketch-based sampling approximate algorithm, respectively. The effectiveness and
efficiency of the proposed algorithms are verified with extensive experiments on both real
and synthetic uncertain datasets.

Y. Tong
State Key Laboratory of Software Development Environment, School of Computer Science
and Engineering, Beihang University, Beijing, China
e-mail: yxtong@nlsde.buaa.edu.cn

X. Zhang · L. Chen (�)
Department of Computer Science and Engineering, Hong Kong University of Science Technology,
Hong Kong, China
e-mail: leichen@cse.ust.hk

X. Zhang
e-mail: zhangxf@cse.ust.hk

mailto:yxtong@nlsde.buaa.edu.cn
mailto:leichen@cse.ust.hk
mailto:zhangxf@cse.ust.hk

World Wide Web

Keywords Frequent itemsets · Distributed · Probabilistic data

1 Introduction

According to a technical report about big data from IBM, 90 % of the data, which is more
than 2.5 quintillion bytes, in the world today was created in the last two years alone [48].
Traditional stand-alone data management techniques encounter a bottleneck when deal with
this large scale of data, and distributed data management approaches are playing a greater
role in the big data era. In addition, with the wide usage of Internet of Things (IoT) and per-
vasive computing in recent years, a growing number of real-world systems collect data from
distributed sites, such as monitoring systems based on sensor networks [28, 30], frameworks
of data integration from multiple data crawlers [19], etc. In particular, due to errors gener-
ated by hardware measurement and data transmission, the data collected from distributed
sites often arises with inherent uncertainty. Thus, we model the data generated from these
applications as distributed uncertain data. Let us take a real project, Shipboard Automated
Meteorological and Oceanographic System (SAMOS) [35], as example. SAMOS collects a
large number of meteorological and near-surface oceanographic observations via research
vessels and ships. According to the technical documents of SAMOS, the data collected
from SAMOS has the following properties: (1) the data is naturally distributed since the
ships are at geographically separated locations; (2) the amount of collected data is often
huge. Specifically, the ships in SAMOS continuously generate hundreds of navigational and
meteorological records including many parameters (e.g., air temperature, pressure, mois-
ture, rainfall, etc.) in a minute or less; (3) the data is uncertain and unreliable because the
data collected in real-time usually includes a lot of noise and imprecise readings. Therefore,
the data from SAMOS can be treated as distributed probabilistic data.

Meanwhile, the problem of tracking frequent items (also called heavy hitters) in deter-
ministic real-time data has been widely studied in many real applications [15, 16, 24, 31–
33]. The problem of tracking frequent items is to find items whose supports are greater than
a specified minimum support threshold. When the concept of frequent items is extended
to uncertain environment, existing researches define two different probabilistic semantics:
expected frequent item [14] and probabilistic frequent item [47] as the support of an item in
uncertain environment becomes a random variable. On one hand, the definition of expected
frequent items uses the expected support (the expectation of the support) to replace the count
in deterministic cases. In other words, an item is an expected frequent item if the expected
support of the item is greater than a specific threshold. On the other hand, the definition of
probabilistic frequent items employs the random event probability that the support is greater
than a specific threshold to replace the count in deterministic cases. Namely, an item X is
an probabilistic frequent item if Pr(sup(X) ≥ r) > t , where sup(·) is the support of X, r
is the minimum support ratio, and t is the probabilistic threshold. In the following, we show
two real application examples of tracking frequent items over distributed uncertain data.

Example 1 (A Real-Time Airport Luggage Tracking System) Figure 1 shows an RFID-based
airport luggage monitoring system, which employs multiple RFID readers to monitor the
luggages in the airport in real time. Each RFID reader has a broadcast range, which is shown
in shadow in Figure 1. Each luggage is attached with a tag and is put on a conveyor belt.
A tag can respond to the broadcasting signals from the readers when it enters the broadcast
ranges of the corresponding readers. Since there are millions of luggage everyday, it is
inefficient to employ only one RFID reader to sense all pieces of luggage on one conveyor

World Wide Web

Figure 1 A real-time airport luggage tracking system

belt. Hence, a practical airport luggage monitoring system is a distributed system, which
needs to merge real-time information from different RFID readers on multiple conveyor
belts.

To optimize the schedule of forklifts, which are used to take the luggage from the con-
veyor belts to flights, airport managers need to know how many pieces of luggage of each
flight are currently on the conveyor belts in real time. If the number of luggage for a flight
exceeds a specific threshold, a forklift will be allocated to process the corresponding lug-
gage. Due to the limitation of hardwares and protocols of RFID, i.e., ALOHA [34], the
accuracy of response of a tag depends on the distance between the reader and the tag and the
signal strength. Therefore, the data collected from RFID readers is usually incomplete and
inaccurate. In this example, if the pieces of luggage, which belong to the same flight, are
considered as the same item, the above problem of scheduling forklifts is actually equivalent
to the problem of finding frequent items in the distributed uncertain monitoring data.

Example 2 (A Sensors-based Monitoring System) Another example is about a distributed-
sensor-based monitoring system. In this system, we suppose each distributed site has several
sensors, which continuously capture and collect readings of different measurements (i.e.
density of carbon dioxide, temperature, etc.). All the sites send the collected readings to
the coordinator periodically. Due to transmission errors and imprecise measurement, the
data collected from multiple sites is usually inconsistent. In other words, though the data is
collected at the same site for the same monitored object, contradictory readings may arise.
Thus, uncertain data models are more suitable for this type of data [27, 37]. In order to
manage the real-time monitoring, a typical tracking goal is to find which monitored values
are frequently observed at the global coordinator site.

In summary, the core task of the aforementioned examples is tracking distributed proba-
bilistic frequent items (TDPF). For the same reasons and the same motivations of previous
studies on tracking distributed deterministic data, the primary goal of TDPF is to reduce the
communication cost in a system, measured by the total number of communicated messages.
For example, in the SAMOS system, cutting down the communication cost would allow
more accurate transmission or more diverse measurement. Because of the inherent differ-
ence in tracking probabilistic and deterministic data, techniques developed for deterministic
scenarios are no longer directly applicable. For example, in an uncertain scenario, we spend
at least O(n2) time, where n is the size of the uncertain data, to calculate the frequentness
probability for an item [47]. On the contrary, the computation cost of calculating the sup-
port for an item is only O(n) in deterministic environment [31]. Therefore, in this paper,

World Wide Web

we propose solutions to minimize the communication cost and to reduce the computation
cost as much as possible in the TDPF problem. To summarize, we have made the following
contributions:

– We formalize the tracking distributed probabilistic frequent items (TDPF) problem and
introduce a non-trivial baseline algorithm.

– We design a deterministic algorithm to solve the TDPF problem. In particular, two
effective pruning methods and an efficient local threshold-based update mechanism
are proposed to reduce the communicated bytes, and a theoretical analysis of the total
number of communicated messages is provided.

– We develop an efficient and effective sketch-based sampling algorithm to further reduce
the communication cost for the worst case.

– Extensive experiments demonstrate the effectiveness and efficiency of the proposed
algorithms.

The rest of the paper is organized as follows. The problem definition and a non-trivial
baseline method are introduced in Section 2. In Section 3, we present a deterministic
algorithm, which includes two pruning methods and a local threshold-based updating mech-
anism to reduce communicated bytes. Furthermore, we propose a sketch-based sampling
algorithm, which not only satisfies the accuracy requirement but also reduces the total num-
ber of communicated messages as much as possible. Experimental studies are reported in
Section 5. We review existing works in Section 6 and conclude the paper in Section 7.

2 Problem formulation

In this section, we first introduce the distributed system architecture adopted by the tracking
problem and some related background concepts, and formally define the TDPF problem.
Then, a non-trivial baseline algorithm is presented.

2.1 System architecture

We first introduce the system architecture, called the flatmodel, which is widely adopted by
many prior works of distributed tracking [13, 22, 23, 25, 27, 45]. In this architecture, there
are k distributed sites S1, . . . , Sk , each of which is associated with an uncertain databaseDi

of the size ni . In addition, there is a centralized server (or called the coordinator), denoted as
H , which aims to maintain (an approximation of) query result continuously at all time. Let
D = D1 ∪ · · · ∪ Dk be the global uncertain database including all the uncertain databases
of the k sites and N = ∑k

i=1ni be the total size of D. The system architecture is shown in
Figure 2.

Since it is more suitable to model and represent the data collected in real-time in a
probabilistic approach, we adopt the x-relationmodel to represent the uncertain data. The x-
relationmodel has already been adopted by a lot of previous studies [14, 47] and is suitable
for measurement and reading data. In this model, an uncertain database (or data set) consists
of a set of tuples, known as x-tuple. In our system, each uncertain databaseDi of Si receives
monitored tuples over time. The j -th tuple in Di is denoted by Ti,j . Each tuple contains a
set of items. For each item X contained in tuple Ti,j , i.e. X ∈ Ti,j , it is associated with a
probability pi,j (X) (0 ≤ pi,j (X) ≤ 1), which is the possibility that the item X appears
in Ti,j . If Ti,j does not contain item X, pi,j (X) = 0. Please note the sum of probabilities
of items in a tuple is smaller than or equal to 1, i.e.

∑
∀X∈Ti,j

pi,j (X) ≤ 1. Furthermore,

World Wide Web

Figure 2 Flat-model-based distributed system architecture

different tuples are assumed to be independent in the x-relationmodel. In fact, an item X in
tuple Ti,j can be considered as a random variable following the Binomial distribution with
probability pi,j (X).

In a deterministic database, the number (or the so-called count) of tuples containing an
item X is called the support of X [2, 3]. However, in the x-relationmodel, the support of an
item becomes a random variable. In our system, we first denote supi(X) as the support of
item X inDi . In other words, supi(X) is the sum of ni random variables following different
Binomial distributions, each with probability pi,j (X). Then globally, for all the tuples in
D, the support of an item X, denoted by sup(X), is actually the sum of

∑k
i=1ni random

variables following different Binomial distributions. Please note that sup(X) is the sum of∑k
i=1ni bounded random variables since ∀pi,j (X) ∈ [0, 1].

2.2 Problem statement

In this subsection, we first define some important concepts, and then formulate the problem
of tracking probabilistic frequent items in distributed systems.

Definition 1 (Expected Support) Given an x-relation uncertain databaseD that includes N

tuples, and an item X, the expected support of X is the mean of sup(X),

E(sup(X)) =
N∑

i=1

pw(X) (1)

where pw(X) is the probability that the item X appears in the w-th tuple. Please note that
sup(X) is a random variable rather than a simple count in uncertain environment.

Definition 2 (Frequentness Probability) Given an x-relation uncertain database D that
includes N tuples, a minimum support ratio r (0 ≤ r ≤ 1), and an item X, the frequentness
probability of X is shown as follows:

Pr{sup(X) ≥ r × N} =
N∑

i=r×N

P r{sup(X) = i} (2)

World Wide Web

Definition 3 (Exact Probabilistic Frequent Item) Given an x-relation uncertain databaseD
that includesN tuples, a minimum support ratio r (0 ≤ r ≤ 1), and a probabilistic threshold
t , an item X is a probabilistic frequent item in D if the frequentness probability of X is
greater than t , namely,

Pr{sup(X) ≥ r × N} > t (3)

Although Definition 3 describes the frequentness probability of an item precisely, it is
computationally costly. According to existing studies [5], the cost of calculating frequent-
ness probability of an item is at least O(N2), where N is the size of the uncertain database
D. Hence, it is infeasible for real-time queries to compute the exact frequentness probabil-
ity for each item. As claimed in some previous studies [14, 25, 45], exact solution is not
required in practice, and the definition of approximate probabilistic frequent item is usually
adopted instead.

Definition 4 (Approximate Probabilistic Frequent Item (APFI)) Given an x-relation uncer-
tain database D that includes N tuples, a minimum support ratio r (0 ≤ r ≤ 1), a
probabilistic threshold t , a minimum support ratio error ε, and a probabilistic threshold error
θ , an item X is an approximate probabilistic frequent item in D if

1)P r{sup(X) ≥ r × N} > t

2)X cannot satisfy Pr{sup(X) ≥ (r − ε)N} < (1 − θ)t
(4)

According to the aforementioned system architecture, we formulate the problem of
tracking distributed probabilistic frequent items (TDPF) as follows.

Definition 5 (Tracking Distributed Probabilistic Frequent Items (TDPF)) Given k dis-
tributed sites S = {S1, . . . , Sk}, each of which is associated with an X-relation uncertain
databaseDi of size ni , a centralized serverH , a minimum support ratio r , and a probabilistic
threshold, t , the TDPF problem is to find a set of APFIs with the minimum communication
cost.

Table 1 summarizes the symbols. We use the following example to illustrate the
definitions above.

Example 3 Given a distributed uncertain database in Table 2 with two sites, each of which
receives two tuples in time slots T ime1 and T ime2 respectively, r = 0.6, and t = 0.4, the
frequentness probabilities of {A} in S1 and S2 are 0.64 and 0.25 respectively. Thus, {A} is a
probabilistic frequent item in S1 but not in S2. However, {A} is probabilistic frequent item
in the whole database, whose frequentness probability is 0.4, since the central server, H ,
considers the frequentness probability of {A} globally.

2.3 Baseline algorithm

Similar to previous work of querying in distributed probabilistic databases [27, 37], we
assume that the probability distribution of each item at an arbitrary site is already stored,
and we try to find which items are (approximately) probabilistic frequent in the global
centralized server according to the local probability distributions. A naive solution is to
upload all the data in the distributed sites to the centralized server and then find the frequent
items. However, the communication cost of such naive solution is prohibited for large-scale

World Wide Web

Table 1 Summary of notations

Notation Meaning

Si an x-relation model-based uncertain local site

Di an x-relation model-based uncertain database corresponding to Si

D the global uncertain database,D = D1 ∪ · · · ∪ Dk

ni the size of Di

H a centralized server (or called coordinator)

N
∑k

i=1ni

pi,j (X) the possibility that the item X appears in the j -th tuple Ti,j inDi

r the specific minimum support ratio

t the specific probabilistic threshold

ε the error of minimum frequent ratio

θ the error of probabilistic threshold

supi(X) the support of an item X in Di

sup(X) the support of an item X in the global D
Ei(sup(X)) the expected support of an item X in Si

E(sup(X)) the global expected support of an item X

networks. Therefore, the major challenge is to calculate the global frequentness probability
for each item with minimum communication cost. In this subsection, we give a non-trivial
baseline solution.

As shown in Algorithm 1, the baseline algorithm first adopts a divide-and-conquer
framework, called the merging algorithm (Algorithm 2), to merge the local probability dis-
tributions of each item. It divides k sites into two groups: U1 = {S1, . . . , S k

2
} and U2 =

{S� k
2�+1, . . . , Sk}, and recursively repeats the divide process until each group includes only

one site. Then, it merges these probability distributions in the conquer phase based on a con-
volution computation. The computation of convolution is shown in the following formula.
Finally, the complete probability distribution of support is obtained when the algorithm
terminates.

PDX[k] =
k∑

i=0

PD1
X[i] × PD2

X[k − i] (5)

where PD1
X and PD2

X are used to store the probability distributions of sup(X) in U1 and
U2, respectively.

Hence, the computational complexity of the merging algorithm for an item X is O(lk),
where l is the number of different values of sup(X) in the global probability distribution of
sup(X). In order to enhance its efficiency, we can utilize the Fast Fourier Transform (FFT)
technique to speed up the merging algorithm, and the computational complexity of the

Table 2 A distributed uncertain
database Time Sites

S1 S2

T ime1 {A (0.8), B(0.2)} {A (0.8), C(0.2)}
T ime2 {A (0.5), C(0.5)} {A (0.5), D(0.5)}

World Wide Web

accelerated merging algorithm becomes O(l
k
2 logl

k
2). If the central server already receives

m distinct items in the past t unit time, the total worst computational complexity of the base-

line algorithm isO(m × t × l
k
2 logl

k
2). The framework of the non-trivial baseline algorithm

is shown in Algorithm 1.

3 An improved deterministic approach

As discussed in the baseline algorithm, a local site sends the new probability distributions
of some items to the coordinator when the items are updated. Thus, too much redundant
information is updated. Since saving communication cost is our primary goal, we analyze
the following two cases that may consume unnecessary communication cost. (1)What data
should be updated? In the baseline algorithm, each local site always sends the new proba-
bility distributions. In fact, there are usually many infrequent items. If we can prune them,
then their probability distributions do not need to be uploaded. (2)When the updated data
should be sent? In the baseline algorithm, the local site sends the new update as long as
a new tuple arrives. Unfortunately, new tuple arrives frequently, so the baseline algorithm
induces much unnecessary communication cost. Thus, an effective update mechanism is
needed to minimize the number of updates while the correctness of results is guaranteed.

Based on the aforementioned analysis, we propose a framework to reduce the update
cost. In our framework, we first conduct a bounding analysis, which identifies the cases
where update of probability distributions is needed. Specifically, we calculate the upper
and lower bounds for the frequentness probability of an item using the expected support

World Wide Web

of this item only. With these two bounds, we can not only filter out infrequent items as
many as possible, but also identify frequent items, whose update of probability distributions
is not needed. Then, based on the bounding methods, we propose an effective threshold-
based update mechanism in Section 3.2, which predetermines a set of thresholds of expected
supports for each local site and uses these thresholds to check the frequentness probability
of each item in the coordinator. In particular, we design two different strategies to calculate
the set of thresholds and discuss their worst-case communication costs. The framework of
the deterministic algorithm is shown in Algorithm 3.

3.1 Early bounding and pruning

Due to the high communication cost, it is infeasible to set up the communication between
the coordinator and all sites once any new update in one site arrives. Furthermore, some
items may be always infrequent globally, thus the communication induced by infrequent
items is redundant. In this subsection, we propose tight lower and upper bounds on the
frequentness probability. The two bounds only use the expected support of an item without
using the complete probability distribution. Then, based on the bounds, we design an early
pruning strategy using the expected support only.

We first introduce the lower and upper bounds of frequentness probability in the
following lemma.

Lemma 1 (Lower and Upper Bounds) Given k distributed sites S = {S1, . . . , Sk}, each
of which is associated with an uncertain database Di of size ni , a centralized server H , a
minimum support ratio r , a minimum support ratio error ε, and an item X, the upper bound
and the lower bound of the frequentness probability of X in H are shown as follows,

⎧
⎨

⎩
Pr{sup(X) ≥ (r − ε)N} ≥ 1 − e− μ(1−(rN/μ)2)

2 μ ≥ (r − ε)N

P r{sup(X) ≥ (r − ε)N} < min{1, (eλ

(1+λ)1+λ)μ} μ < (r − ε)N
(6)

where μ = E(sup(X)) = ∑k
i=1Ei(sup(X)), in which Ei(sup(X)) = ∑ni

j=1pi,j is the

expected support of the item X at site Si , N = ∑k
i=1ni , and λ = n(r−ε)2

rμ
− 1.

World Wide Web

Proof According to the definition of support of an item X over D in Section 2, sup(X)

is actually the sum of
∑k

i=1ni bounded random variables following Binomial distributions.
The global expected support of an item X inD, denoted by E(sup(X)), is

∑k
i=1

∑ni

j=1pi,j .
Thus, for each item, its support satisfies the condition of Chernoff inequality [9]. According
to the Chernoff inequality, we know that

Pr{sup(X) ≥ (1− α)μ} ≥ 1 − e− μα2

2 (0 < α < 1)

when μ ≥ (r − ε)N . Let (1− α)μ = (r − ε)N . We know α = 1− (r−ε)N
μ

. Replacing α in
the aforementioned formula,

Pr{sup(X) ≥ (r − ε)N}
≥ 1 − e− μ(1−((r−ε)N/μ)2)

2

> 1 − e− μ(1−(rN/μ)2)
2

Thus, the lower bound of frequentness probability holds.
When μ < (r − ε)N ,

Pr{sup(X) ≥ (1 + λ)μ} <

(
eλ

(1+ λ)(1+λ)

)μ

Let (1 + λ)μ = (r − ε)N , we know λ = (r−ε)N
μ

− 1 and,

Pr{sup(X) ≥ (r − ε)N} <

(
eλ

(1 + λ)1+λ

)μ

Since the Pr{sup(X) ≥ (r − ε)N} ≤ 1, we can obtain the above upper bound. Therefore,
the lemma holds.

Complexity of the Bounding Since the aforementioned lower and upper bounds adopt
the expected support to approximate the frequentness probability, we only need to sum
the expected support of each item over all local sites. Thus, the time complexity and
communication cost in the coordinator areO(k), where k is the number of sites.

According to Definition 4, we can define a pair of pruning rules based on the minimum
frequent ratio r and the minimum frequent ratio error r − ε. Based on the upper and lower
bounds, we can filter out infrequent items early and identify some probabilistic frequent
items by Lemma 2.

Lemma 2 (Early Bounding and Pruning)
Given k distributed sites S = {S1, . . . , Sk}, each of which is associated with an uncertain

database Di of size ni , a centralized server H , a minimum support ratio r , a probabilistic
threshold t , a minimum support ratio error ε, a probabilistic threshold error θ , and an item
X, we can obtain the following two early bounding or pruning.

(1) X can be safely pruned if the upper bound is smaller than (1− θ)t;
(2) X must be an APFI if the lower bound is greater than t .

World Wide Web

Proof According to Definition 4, an item X is an approximate probabilistic frequent item
(APFI) in D = D1 ∪ · · · ∪Dk if and only if the following two conditions are satisfied. On
one hand, Pr{sup(X) ≥ (r − ε)N} < (1− θ)t must not hold if X is an APFI . According
to the upper bound in Lemma 1, X must not be an APFI if the upper bound is smaller
than (1 − θ)t . On the other hand, Pr{sup(X) ≥ r × N} > t needs to be satisfied if X is
an APFI . Based on the lower bound in Lemma 1, X must be APFI if the lower bound is
greater than t . Thus, Lemma 2 holds.

In summary, we can determine whether an item is approximately probabilistic frequent
early using the expected support of this item based on Lemma 2. Thus, for the bounded
items, we can design an effective update mechanism by updating the expected supports only.
For each of the remaining items, which cannot be bounded, the coordinator has to notify
all the local sites, and then the local sites will upload the probability distribution of support
of this item. According to the early bounding and pruning method, we propose an effective
expected support threshold-based update mechanism in the next subsection.

3.2 Local threshold-based update mechanisms

In this subsection, we first introduce the basic idea of our local threshold-based update
mechanism, which predetermines a series of thresholds of expected supports in each local
site and uses these thresholds to estimate the frequentness probability for each item in the
coordinator. Then, we further design two different strategies and discuss their worst-case
communication costs.

3.2.1 Basic Idea

In this part, we introduce the basic idea of the local threshold-based update mechanism,
which is shown as follows. Each local site sets a series of thresholds of the expected sup-
port. When the expected support of an item exceeds each threshold, the local site sends the
updated expected support to the coordinator. After receiving k updates of an item, the coor-
dinator adopts the early bounding and pruning methods to test the item. If the item is not
bounded, the coordinator requires all the local sites to upload the probability distributions
of this item and further verifies its frequentness. The update mechanism repeats the above
process to track the set of APFIs. In the following, we define some notations of our update
mechanism.

Assume that the i-th local site, Si , maintains a series of thresholds, ti,j (j = 0, 1, . . .)
and ti,j < ti,j+1, where ti,j is the j -th threshold in the local site Si . Let Ei(sup(X)) be the
current expected support of the item X in Si . Suppose ti,j is the current local threshold that
is just exceeded by Ei(sup(X)), and ti,j ≤ Ei(sup(X)) ≤ ti,j+1 is satisfied. As long as
the new Ei(sup(X)) > ti,j+1, the local site sends Ei(sup(X)) to the coordinator and resets
the new local threshold to ti,j+1. In other words, before the coordinator receives the new
Ei(sup(X)), the Ei(sup(X)) must lie between the two thresholds, ti,j and ti,j+1. Hence,
the maximum error of the expected supportEi(sup(X)) in Si is given by ti,j+1− ti,j , where
ti,j is the current local threshold. Since each pair of adjacent thresholds, ti,j and ti,j+1, must
satisfy the aforementioned requirement, the total number of updates sent from the local sites
to the coordinator is equivalent to the number of thresholds at the local sites. In order to
minimize the communication cost, how to predetermine and assign a series of thresholds is
the core challenge, which is formally stated as follows.

World Wide Web

Definition 6 (Threshold Assignment Problem) Given k distributed sites S = {S1, . . . , Sk},
a coordinator H , and the minimum support ratio error ε, each determined threshold ti,j in
Si needs to satisfy the following constraints,

– ti,j+1 > ti,j and ti,0 = 0;

–
∑k

i=1(ti,j+1 − ti,j) ≤ ε
∑k

i=1Ei(sup(X));

In the aforementioned definition, the first constraint means that the thresholds are mono-
tonically increasing as j increases. This ensures that the error between two thresholds,
ti,j+1 − ti,j , is never negative. The second constraint guarantees that the maximum total
error in the coordinator satisfies the error requirement in the definition of approximate
probabilistic frequent items.

In the remaining parts of this subsection, we present two threshold assignment mecha-
nisms to determine the local thresholds at each local site and discuss their communication
costs, respectively.

3.2.2 A simple threshold assignment mechanism

In this part, we present a simple threshold assignment mechanism. According to Defini-
tion 4, we know that the maximum global error is εN , where N is the size of the global
uncertain databaseD at coordinator H . In order to control the maximum total error of each
item in the coordinator, a simple solution is to set the j -th threshold at Si to ti,j = jrεN

k
. In

fact, this simple method uniformly divides and transfers the maximum global error into each
local site, which is called the simple threshold assignment approach. Based on the setting,
we have total error

∑k
i=1(ti,j+1 − ti,j) ≤ rεN < εN . The total error satisfies the definition

of approximate probabilistic frequent items, and the maximum number of updates of each
item is εN

jrεN
k

= k
rε
. To sum up, based on the simple threshold assignment mechanism, we

can obtain the following lemma.

Lemma 3 (Communication Cost of the Simple Threshold Assignment) The total cost
of communication between all the sites and the coordinator using the simple thresh-
old assignment approach is O (

vk
rε

)
, where v is the number of distinct items in the

coordinator.

Proof According to the idea of the simple threshold assignment mechanism, this mecha-
nism uniformly splits and transfers the maximum global error εn into each local site. For
each item, the maximum number of updates from all local sites to the coordinator is k

rε
.

Thus, the total communication cost of this mechanism for all items is O (
vk
rε

)
, where v is

the number of distinct items in the coordinator.

3.2.3 An improved threshold assignment mechanism

As discussed in the last part, the simple threshold assignment approach uniformly splits the
maximum global error. However, in many real-world cases, it is unrealistic that the errors
from different local sites are similar. Furthermore, with the increasing size of the collected
data, the simple threshold assignment approach does not scale up well to large datasets. For
this reason, we propose an improved threshold assignment mechanism, which is to assign

World Wide Web

thresholds according to the proportion of the size of the data. A formal definition of the
improved threshold assignment mechanism is shown as follows.

Let the (j + 1)-th threshold at Si is ti,j+1 = (1 + ε)ti,j and ti,0 = 0, ti,1 = 1. At each
local site, the maximum error is ti,j+1 − ti,j = εti,j . Therefore, the maximum global error
in the coordinator is,

k∑

i=1

(ti,j+1 − ti,j) =
k∑

i=1

εti,j ≤ ε

k∑

i=1

Ei(sup(X)) < εN (7)

Thus, for each item, this threshold assignment mechanism satisfies the error requirement
in the definition of approximate probabilistic frequent item. Hence, we have the following
lemma.

Lemma 4 (Communication Cost of the Improved Threshold Assignment) The total cost
of communication between all the sites and the coordinator using the improved thresh-
old assignment approach is O (

vk
ε

log N
k

)
, where v is the number of distinct items in the

coordinator.

Proof For an item X, let Ei(sup(X)) and ti,j be the current expected support of X and the
current local threshold in Si respectively, we have ti,j ≤ Ei(sup(X)) < ti,j+1. According
to the improved threshold assignment approach, ti,j = (1 + ε)j−1. Thus, the number of
updates for item X at Si is

j = 1 + log1+ε ti,j ≤ 1 + logEi(sup(X))

log(1 + ε)
(8)

Thus, the global communication cost for item X is

k∑

i=1
j ≤ k +

k∑

i=1

logEi (sup(X))
log(1+ε)

< k
ε
log N

k
(9)

Therefore, the total communication cost of this mechanism for all items is O (
vk
ε

log N
k

)
,

where v is the number of distinct items in the coordinator.

3.3 A threshold-based deterministic algorithm

In this subsection, we propose the complete deterministic algorithm, which incorporates the
aforementioned local threshold-based update mechanism to reduce the communication cost
as much as possible. Furthermore, the communication cost in the worst case is also given.
The pseudo code of this algorithm is shown in Algorithm 4.

World Wide Web

In Algorithm 4, we initialize the set of thresholds by the improved threshold assign-
ment mechanism in line 1. Then, the algorithm can be divided into two parts: the local
site part and the coordinator part. Lines 1-12 describe the operations at each local site.
When a tuple T is received by the i-th site Si , Si first maintains the probability dis-
tributions and the expected supports of the items, which are contained in T in line 7.
For each item, Si sends its expected support to H if its expected support reaches a new
threshold. Furthermore, Si uploads the probability distribution of an item if the coordina-
tor requests in lines 11-12. Lines 13-23 are about the coordinator. When the coordinator
receives the updated information in lines 13-20, it updates the current global size and
the corresponding expected support. Then, the coordinator tests whether this item can be
filtered out or be bounded according to Lemma 2. If the item cannot be bounded, the
coordinator has to request all the probability distributions of this item from the k local
sites and calculate the frequentness probability to further verify it frequentness in lines
21-22.

The communication cost of this algorithm is given in the following theorem.

Theorem 1 (Communication Cost of the Deterministic Algorithms) The total cost of com-
munication between all the sites and the coordinator using the deterministic algorithm is
O(v1k

ε
log N

k
+ v2N), where v1 and v2 are respectively the numbers of items which can be

bounded and those cannot be bounded according to Lemma 2.

World Wide Web

Proof Let v = v1 + v2. Based on Lemma 4, the communication cost of v1 items is
O(v1k

ε
log N

k
). For the v2 items, this algorithm has to collect the complete probability distri-

butions for them. Hence, the communication cost of v2 is O(v2N), where N is the size of
D at H , namely the total number of global tuples.

To explain the deterministic algorithm, we illustrate it via the following example.

Example 4 (The Deterministic Algorithm) Given a distributed uncertain database as shown
in Table 2, r = 0.6, t = 0.5, ε = θ = 0.1, δ = 0.01, the set of thresholds at site S1 is
initialized as follows: t1,0 = 0, t1,1 = 1, t1,2 = 1.1, t1,3 = 1.21, After S1 receives the
first tuple, E1(sup(A)) = 0.8. Since the current local threshold for the item A is t1,0 = 0,
S1 sends E1(sup(A)) = 0.8 and n1 = 1 to H . Meanwhile, the current local threshold for
A is changed to t1. Furthermore, the coordinator can return A as an APFI if the coordi-
nator only receives the E1(sup(A)) = 0.8 in the global system. If the coordinator receives
E1(sup(A)) = 1.6, E2(sup(A)) = 0.9, n1 = n2 = 2, the item A cannot be bounded or
pruned since E(sup(A)) = E1(sup(A)) + E2(sup(A)) = 2.5 and N = n1 + n2 = 4
according to Lemma 2.

4 A sketch-based sampling approach

Even though the proposed deterministic algorithm intends to track approximate probabilistic
frequent items by updating the expected support as less often as possible, this algorithm still
has to transmit the complete probability distributions of the items, which cannot be pruned
or bounded by Lemma 2. In this section, we design a sketch-based sampling algorithm,
which reduces the communication cost in the worst case. The basic idea of the sampling
algorithm is to use sketches to reduce communication and computation cost. In the follow-
ing, we first briefly introduce our main idea in Section 4.1, and then describe the sampling
algorithm in Section 4.2, and finally prove the correctness of the sampling algorithm in
Section 4.3.

4.1 Main ideas

Our main idea is derived from the AMS Sketch[4]. We first review the basic idea of AMS
Sketch, which is widely used to estimate frequency moments. The AMS Sketch consists of
a matrix, each element of which stores a sampled count. For the sketch, it first calculates
two important parameters, the number of rows and that of columns, based on user-specific
approximation errors. Then this sketch performs sampling for each element of the matrix
and maintains the sampled counts. After sampling, an AMS Sketch-based algorithm is usu-
ally adopted to take the average of each row in the matrix and use the median of the averages
from all the rows as the final estimator. It aims to reduce the influence of variances in the
sampling by taking the average of each row. Meanwhile, it also enhances the probability of
success by using the median among the averages of all distinct rows.

Inspired by the idea of AMS Sketch, we first construct an AMS Sketch for each item at
each local site and the coordinator. For each item, our algorithmmaintains an exact sampling
result at each local site and performs an effective sampling method to decide when the local
results should be updated to the coordinator. Finally, when the coordinator tries to find the
current APFIs, our algorithm uses the average-median approach to calculate the estimated
approximate frequentness probability for each item and decide which items are APFIs.

World Wide Web

4.2 Algorithm description

The pseudo code of our algorithm is shown in Algorithm 5. First, we initialize two param-
eters, m1 and m2, which are the number of rows and columns in the sketch matrix,
respectively. In line 1, let m1 = 2ln(1

δ
), where δ is a parameter about the confidence error

of this sampling algorithm, and m2 = 8
θ2t

, where t and θ are the probabilistic threshold and
the error of the probabilistic threshold, respectively. Then, we maintain m1 × m2 sampled
counts for each item in the coordinator and each local site in line 2. Given the item X, one
of the m1 × m2 sampled counts is denoted as C

X,l
i,j at the l-th local site (or CX

i,j in the coor-
dinator), where 1 ≤ i ≤ m1 and 1 ≤ j ≤ m2. Our sampling algorithm consists of two parts,
the local site part in lines 3-10 and the coordinator part in lines 11-25, respectively.

At a local site Sl , when a new tuple arrives, we perform m1 × m2 units of sampling
operation, each of which includes two random components, in lines 5-10. We first decide

World Wide Web

which item appears in this tuple. Please note that there exists at most one sampled item in
each tuple since different items in a tuple are mutually exclusive according to the x-relation
model. Once an item X is sampled as the outcome, we add 1 to C

X,l
i,j and decide whether

C
X,l
i,j should be uploaded with probability p in lines 7-11. If so, the count of C

X,l
i,j at this

local site is sent to the coordinator, and is then reset to zero (in lines 10-11). Otherwise,
C

X,l
i,j remains unchanged.

On the other hand, the coordinator H keeps receiving the uploaded C
X,l
i,j from different

local sites and accumulates them to CX
i,j in lines 13-14. When a TDPF query is requested,

the coordinator determines whether each CX
i,j is greater than r ×N , where r is the minimum

support ratio (in lines 15-23). If so, ζX
i,j = 1, and otherwise ζX

i,j = 0 (in lines 18-21). Then,

based on the AMS Sketch, let YX
i =

∑s2
j=1ζ

X
i,j

sm2
in line 22. For m1 YX

i (1 ≤ i ≤ m1), let

YX = median{YX
1 , . . . , YX

m1
} in line 24. In lines 25-26 our algorithm decides whether X is

an APFI or not according to the following conditions,

{
X is APFI YX > t

X is not APFI YX < (1− θ)t
(10)

To sum up, in our algorithm, the coordinator first collects m1×m2 samples of the support
of each item from k local sites. In this process, each local site first maintains m1 × m2 local
sampled counts for each item and then randomly decides whether to upload a count when
it is increased. When a TDPF query is required, for each item, the coordinator tests which
of the m1 × m2 counts are greater than r × n and obtains m1 × m2 ζX

i,j . The matrix ζX
i,j is

utilized to decrease the variance of samples via taking the average of ζX
i,j in each row and to

improve the success probability of the sampling algorithm by taking the median of the m1
averages. According to our algorithm, the probability that an item is correctly decided is at
least 1 − δ, which will be proved later. To explain our sampling algorithm, we illustrate it
via the following example.

Example 5 (The AMS-Sketch-based Sampling Algorithm) Given a distributed uncertain
database as shown in Table 2, r = 0.5, t = 0.8, ε = θ = 0.1, δ = 0.01, we first obtain the
two parameters of the AMS-Sketch, i.e. m1 = 5, m2 = 2000. For the site S1, when the tuple
{A(0.8),B(0.2)} arrives, we need to perform 5 × 2000 samplings. For example, in the first
sample, we obtain the item A without update. Thus, in the AMS −Sketch of A, CA,S1

1,1 = 1.

If we obtain A with update in the second sample, we first set C
A,S1
1,1 = 2 and send it to the

coordinator. Afterwards, we reset CA,S1
1,1 to 0. The remaining sampling processes is similar.

In the coordinator side, we calculate the averages of samples in each row as fol-
lows:

{
YA
1 = 0.5, YA

2 = 0.3, YA
3 = 0.1, YA

4 = 0.4, YA
5 = 0.1

}
. We then can obtain that the

median is YA = 0.3 < 0.8, and thus A is not an approximate probabilistic frequent item.

4.3 Correctness analysis

In this subsection, we prove the correctness of the proposed sampling algorithm.

Theorem 2 (Correctness of the Sketch-based Sampling Algorithm) For an arbitrary item
X in the result of Algorithm 5, it satisfies the definition of the approximate probabilistic
frequent item with probability at least 1 − δ.

World Wide Web

Proof According to the aforementioned algorithm, we know that C
X,l
i,j is one of the m1 ×

m2 sampled counters of an item X at a local site Sl . The latest uploaded value of C
X,l
i,j is

denoted as C̄
X,l
i,j . Since a local site Sl always uploads an sampled count to the coordinator

with probability p, the coordinator actually receives C̄
X,l
i,j ≤ C

X,l
i,j . Let �

X,l
i,j = C

X,l
i,j −

C̄
X,l
i,j , which is a random variable of the underestimated value between C

X,l
i,j and C̄

X,l
i,j and

follows the geometric distribution with probability p. Hence, in the coordinator, the global
underestimated error of the {i,j}-th counter ofX is�X

i,j = ∑k
l=1�

X,l
i,j , where k is the number

of local sites. Thus, we know that each ζX
i,j follows Bernoulli distribution according to the

corresponding global underestimated error �X
i,j . Hence, we can obtain the expectation and

variance of each YX
i ,

E
[
YX

i

] =
∑m2

j=1 E
[
ζX
i,j

]

m2
= μ,

V ar
[
YX

i

] =
∑m2

j=1

(
V ar

[
ζX
i,j

])

m2
2

≤ 1
m2

(11)

Hence, we can obtain the following bound,

Pr
(
|YX

i − Ŷ X
i | ≤ ε

)
≥ 1 − 1

4ε2m2
(Chebyshev Inequality) (12)

Let I be the number that |YX
i − Ŷ X

i | ≥ ε holds, which means that X actually violates the
definition of APFI . Since YX is the median of m1 YX

i (1 ≤ i ≤ m1), we focus on the
whether probability of I > m1

2 is fewer than δ. If so, the theorem holds. Namely,

Pr
(
I >

m1

2

)
= Pr

(

I − l

4
≥ l

4

)

≤ e
9l
8 < δ (Chernoff Inequality) (13)

Hence, the definition of APFI is obeyed with probability at least 1-δ. The theorem holds.

5 Experimental study

In this section, we report the experimental results on the performance of our proposed algo-
rithms, in terms of communication cost and efficiency. In order to conduct a fair comparison,
we build up a test bed on a cluster of 16 servers. Every server has 4 Intel(R) Xeon(R) E5–
2650 CPUs of 2.0 GHz, each of which has 4 cores and supports 16 threads, 12 GB memory
and 1 TB hard disk storage. The running operating system is 2.6.35-22–server #35-Ubuntu
SMP.We employed theMPI implementation for consideration of time efficiency. MPICH2–
1.4.1p1 is adopted and the compiler switch O3 is on. Moreover, all the algorithms were
implemented in C++.

5.1 Experimental setting

We evaluate our algorithms on both a real data set and a synthetic data set. The real data set is
from the SAMOS project [35], which has been used in previous studies of distributed prob-
abilistic data [37]. The raw data of this dataset comes from the research vesselWecoma and
includes 11.79 million records, which are generated by the oceanographic measurements
fromMarch to November in 2010. Each record contains time and date, wind direction, wind
speed, sound speed, and temperature measurements.

World Wide Web

For the synthetic data set, we choose a classical deterministic benchmark, gazelle, and
assign the probability generated from Gaussian distribution to each item. Assigning proba-
bility to deterministic database to generate synthetic uncertain test data is widely accepted
in the current community [1, 27, 38]. The gazelle dataset comes from the click-stream data
of a small dot-com company called Gazelle.com. This dataset was used in the KDD-Cup
2000 competition (available on www.ecn.purdue.edu/KDDCUP). For each record in this
dataset, each item is randomly assigned a probability which follows the Gaussian distri-
bution (mean = 0.9, variance = 0.1) and the probabilities of the items in each row are
normalized to satisfy the requirement of x-relation model. Furthermore, each record has a
local-site-Si choice, where i is randomly selected in the range of 1 to 10. Since the flat
model is used, server-to-client communication is broadcast, while client-to-server commu-
nication is unicast. The server-to-client broadcast counts as one single message, regardless
of the number of clients. The default values of the key parameters are: r = 0.3, ε = 0.1,
t = 0.8, θ = 0.1 and k = 10.

5.2 Communication cost

In this subsection, we compare the communication costs of three algorithms, namely
DNoBound,DBound and Sampling.DNoBound represents Algorithm 4 without any bound-
ing techniques; DBound and Sampling represent the complete Algorithm 4 and Algorithm
5, respectively.

Effect of r First, we demonstrate the communication costs of DNoBound, DBound and
Sampling when we vary r from 0.5 to 0.1, as shown in Figures 3a to d. Both the number

0.10.20.30.40.5
10

30

50

70

90

r

N
u

m
b

e
r
 o

f
M

e
s
s
a

g
e

s

Sampling

DBound

DNobound

0.10.20.30.40.5

2

4

6

8

10

12

14

r

N
u

m
b

e
r
 o

f
M

e
s
s
a

g
e

s
 (

K
B

) Sampling

DBound

DNobound

0.10.20.30.40.5
10

30

50

70

90

r

N
u

m
b

e
r
 o

f
M

e
s
s
a

g
e

s

Sampling

DBound

DNobound

0.10.20.30.40.5
10

30

50

70

90

r

N
u

m
b

e
r
 o

f
M

e
s
s
a

g
e

s

Sampling

DBound

DNobound

Figure 3 Performance of communication cost with varying r

www.ecn.purdue.edu/KDDCUP

World Wide Web

of messages and bytes increase for all algorithms when r increases, because a smaller
minimum support ratio would lead to a larger number of items qualified as frequent, and
hence more communication cost. The three competing algorithms are run on both SAMOS
and Gazelle, and we show the communication cost in both terms of the number of mes-
sages and bytes. Clearly, in all cases, Sampling outperforms the others. In addition,DBound
significantly outperforms DNoBound.

Effect of ε When ε changes, Figures 4a to d show the communication costs of various
methods.DNoBound still performs the worst among the three. An important finding is that,
with the increase of ε, Sampling becomes less advantageous compared to DBound. When
ε is large enough, DBound becomes even more efficient than Sampling. The reason is that,
the increase of ε enhances the pruning powers of the proposed bounding techniques, and
hereby many infrequent items are filtered out without inducing any communication cost.

Effect of t Wenext investigate the impact of the probabilistic threshold. Figures 5a to d show
the results of communication cost. When t is changed from 0.9 to 0.5, DNoBound benefits
the most as its communication cost in terms of both the number of messages and bytes is
decreasing. DBound still consumes much fewer messages and bytes than DNoBound does,
and Sampling performs the best in all cases.

Effect of θ As shown in Figures 6a to d, the ranking of the three algorithms remains the
same - Sampling is still the best and DBound remains the worst. In addition, we find that
the change of θ has little influence on the performances of the algorithms.

2015105
0

10

20

30

40

k

N
u
m

b
e
r
 o

f
M

e
s
s
a
g
e
s

Sampling

DBound

DNobound

2015105
0

5

10

k

B
y
te

(
K

B
)

Sampling

DBound

DNobound

2015105
0

10

20

30

40

k

N
u
m

b
e
r
 o

f
M

e
s
s
a
g
e
s

Sampling

DBound

DNobound

2015105
0

5

10

k

B
y
te

(
K

B
)

Sampling

DBound

DNobound

Figure 4 Performance of communication cost with varying ε

World Wide Web

0.50.60.70.80.9
10

30

50

70

90

t

N
u

m
b

e
r
 o

f
M

e
s
s
a

g
e

s

Sampling

DBound

DNobound

0.50.60.70.80.9

2

4

6

8

10

12

14

t

B
y
te

s
 (

K
B

)

Sampling

DBound

DNobound

0.50.60.70.80.9
0

20

40

60

80

t

N
u

m
b

e
r
 o

f
M

e
s
s
a

g
e

s

Sampling

DBound

DNobound

0.50.60.70.80.9
0

5

10

t

Sampling

DBound

DNobound

Figure 5 Performance of communication cost with varying t

Effect of k Finally, we investigate the impact of the number of sites. Figures 7a and d show
the results. We can observe a linear correlation between the number of messages and k,
where Sampling consistently performs the best. In addition, all algorithms send more bytes
as k increases, and both Sampling and DBound send much fewer bytes than DNoBound
does.

Conclusion The sampling algorithm (Algorithm 5) beats the deterministic algorithms
(Algorithm 4 and Algorithm 4 without bounding techniques) in terms of both the num-
ber of communicated messages and the communicated Bytes. In other words, the sampling
algorithm has smaller communication cost than that of deterministic algorithms.

6 Related work

In this section, we review the related work of tracking over distributed data in both
deterministic and probabilistic environments.

6.1 Tracking in distributed probabilistic data

The most closely related researches to our work are about querying over distributed
probabilistic data. Li et al. [27] propose the first work of ranking queries in distributed prob-
abilistic data. Recently, a communication-efficient solution for probabilistic threshold-based
distributed skyline query has been proposed in [18].

World Wide Web

0.050.10.20.30.4
10

30

50

70

90

θ

N
u
m

b
e
r
 o

f
M

e
s
s
a
g
e
s

Sampling

DBound

DNobound

0.050.10.20.30.4

2

4

6

8

10

θ

B
y
te

s
 (

K
B

)

Sampling

DBound

DNobound

0.050.10.20.30.4
10

30

50

70

90

110

θ

N
u
m

b
e
r
 o

f
M

e
s
s
a
g
e
s

Sampling

DBound

DNobound

0.050.10.20.30.4

2

4

6

8

10

θ

B
y
te

s
 (

K
B

)

Sampling

DBound

DNobound

Figure 6 Performance of communication cost with varying θ

In particular, a close work, querying probabilistic top-k frequent items in distributed
probabilistic data [44], has been proposed. This work aims to find k probabilistic items
with the largest frequent probabilities from distributed probabilistic data. Similar to [27],
this work also focuses on maintaining a ranking list of top-k frequent items with minimal
communication cost. There are three main differences between [44] and our work. First,
the problem definitions are different. [44] only detects top-k probabilistic frequent items;
however, our work is to find all probabilistic frequent items. Thus, it is infeasible to directly
extend the methods of [44] to track all probabilistic frequent items. Our experimental studies
also prove that solution in [44] is not suitable for our problem. Second, [44] only provides a
naive pruning method without effective pruning and bounding techniques. Third, there is no
comprehensive theoretical analysis on communication cost in [44]. Tang et al. [37] have also
studied the problem of threshold-based monitoring in distributed probabilistic data, which
is to aggregate constraint monitoring on distributed uncertain data, and provide an efficient
and effective solution to reduce the communication and the computational costs.

Besides querying in distributed probabilistic data, another related line of works is find-
ing and mining frequent items(or itemsets) in stand-alone uncertain data. As introduced in
Section 1, the definition of a frequent item (or called heavy hitter) over uncertain data has
two types of semantic explanations: expected heavy hitters [14] and probabilistic heavy hit-
ter [47]. In a stand-alone environment, the solutions aim to reduce memory cost rather than
communication cost. Moreover, a more complicated and related topic is to discover fre-
quent itemsets over uncertain data. Similar to querying heavy hitters over uncertain stream,
frequent itemset over uncertain data has two types of definitions, expected support-based
frequent itemset [1, 6, 10, 11] and probabilistic frequent itemset [5, 36]. Since the num-
ber of frequent itemsets may be exponential, most works about mining frequent itemset in

World Wide Web

2015105
0

10

20

30

40

k

N
u

m
b

e
r
 o

f
M

e
s
s
a

g
e

s

Sampling

DBound

DNobound

2015105
0

5

10

k

B
y
te

(
K

B
)

Sampling

DBound

DNobound

2015105
0

10

20

30

40

k

N
u

m
b

e
r
 o

f
M

e
s
s
a

g
e

s

Sampling

DBound

DNobound

2015105
0

5

10

k

B
y
te

(
K

B
)

Sampling

DBound

DNobound

Figure 7 Performance of communication cost with varying k

uncertain data only handle static uncertain data [38, 40]. They mainly focus on effective
index structures or probability distribution-based approximation methods to speed up the
mining process. For example, under the definition of expected support-based frequent item-
set, UFP-tree [26] and UH-Mine [1] are recently proposed to enhance the performance of
the algorithms. Moreover, under the definition of probabilistic frequent itemset, the support
of any itemset actually follows Possion Binomial distribution. According to the probability
distribution approximation theory, both Possion distribution-based approximation method
[42, 43] and the Normal distribution-based approximation method [7] have been devel-
oped. Furthermore, other extended variants [8, 29, 39, 41] of probabilistic frequent itemset
have been studied recently. Although the previous solutions solve some problems of query-
ing over distributed and stand-alone uncertain data, none of them studies how to track all
probabilistic frequent items in distributed probabilistic data.

6.2 Tracking in distributed deterministic data

Another research area, related to our work, is tracking in distributed deterministic data.
There are many prior studies. In distributed tracking in deterministic data, the tracked object
is a simple count rather than the complicated probability distribution in uncertain scenar-
ios. For the problem of finding frequent items in distributed deterministic data, Yi. et al
propose efficient deterministic [45, 46] and randomized algorithms [23]. Moreover, [20]
proposes the problem of distributed tracking quantiles in deterministic data, then [13] and
[21] provide the efficient deterministic and randomized algorithms, respectively. The effi-
cient solution to track distributed aggregates over sliding-window streams is proposed in

World Wide Web

[17]. Recently, [12] provides a comprehensive survey for continuous distributed monitor-
ing models. Although there are a lot of works on tracking in distributed deterministic data,
all these solutions are designed for exact data and cannot be extended to probabilistic data
directly.

7 Conclusions

In this paper, we focus on the problem of tracking distributed probabilistic frequent items
(TDPF). In order to reduce the computational cost as much as possible, we propose a com-
prehensive solution. In our solution, we first design a local threshold-based deterministic
algorithm. Especially, two effective pruning rules and a local-threshold-based update mech-
anism are proposed. Since the deterministic algorithm may encounter high communication
and computation cost in the verification phase, we further develop an efficient sketch-based
sampling method, which not only reduces the communication cost but also enhances the
efficiency through avoiding the high computation burden. Furthermore, the communica-
tion costs of all algorithms are theoretically analysed. Finally, the extensive experiments
demonstrate the effectiveness and efficiency of the proposed algorithms.

Acknowledgments We are grateful to anonymous reviewers for their constructive comments on this
work. This work is supported in part by the Hong Kong RGC Project N HKUST637/13, National Grand
Fundamental Research 973 Program of China under Grant 2014CB340303, NSFC Grant No. 61232018,
Microsoft Research Asia Gift Grant, Google Faculty Award 2013, and Microsoft Research Asia Fellowship
2012.

References

1. Aggarwal, C., Li, Y., Wang, J., Wang, J.: Frequent pattern mining with uncertain data. In: Proc. of
SIGKDD, pp. 29–38 (2009)

2. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large databases
In: Proc. of SIGMOD, pp. 207–216 (1993)

3. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Proc. of
VLDB, pp. 487–499 (1994)

4. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the frequency moments. J.
Comput. Syst. Sci. 58(1), 137–147 (1999)

5. Kriegel, T., Bernecker, H., Renz, M., Verhein, F., Zufle, A.: Probabilistic frequent itemset mining in
uncertain databases. In: Proc. of SIGKDD, pp. 119–128 (2009)

6. Calders, T., Garboni, C., Goethals, B.: Efficient pattern mining of uncertain data with sampling. In: Proc.
of PAKDD, pp. 480–487 (2010)

7. Calders, T., Garboni, C., Goethals, B.: Approximation of frequentness probability of itemsets in
uncertain data. In: Proc. of ICDM, pp. 749–754 (2010)

8. Chen, L., Liu, C., Zhang, C.: Mining probabilistic representative frequent patterns from uncertain data.
In: Proc. of SDM, pp. 73–81 (2013)

9. Chernoff, H.: A measure of the asymptotic efficiency for tests of a hypothesis based on the sum of
observations. Ann. Math. Stat. 23, 493–509 (1952)

10. Chui, C., Kao, B.: A decremental approach for mining frequent itemsets from uncertain data. In: Proc.
of PAKDD, pp. 64–75 (2008)

11. Chui, C., Kao, B., Hung, E.: Mining frequent itemsets from uncertain data. In: Proc. of PAKDD, pp. 47–
58 (2007)

12. Cormode, G.: The continuous distributed monitoring model. SIGMOD Record 42(1), 5–14 (2013)
13. Cormode, G., Garofalakis, M., Muthukrishnan, S., Rastogi, R.: Holistic aggregates in a networked world:

distributed tracking of approximate quantiles. In: Proc. of SIGMOD, pp. 25–36 (2005)

World Wide Web

14. Cormode, G., Garofalakis, M.: Sketching probabilistic data streams. In: Proc. of SIGMOD, pp. 281–292
(2007)

15. Cormode, G., Hadjieleftheriou,M.: Finding frequent items in data streams. Proc. of VLDB Endow. 1(2),
1530–1541 (2008)

16. Cormode, G., Muthukrishnan, S., Yi, K., Zhang, Q.: Continuous sampling from distributed streamss. J.
ACM 59(2), 10 (2012)

17. Cormode, G., Yi, K.: Tracking distributed aggregates over time-based sliding windows. In: Proc. of
SSDBM, pp. 416–430 (2012)

18. Ding, X., Jin, H.: Efficient and progressive algorithms for distributed skyline queries over uncertain data.
IEEE Trans. Knowl. Data Eng. 24(8), 1448–1462 (2012)

19. Dong, X., Halevy, A., Yu, C.: Data integration with uncertainty. In: Proc. of VLDB, pp. 687–698 (2007)
20. Greenwald, M., Khanna, S.: Space-efficient online computation of quantile summaries. In: Proc. of

SIGMOD, pp. 58–66 (2001)
21. Huang, Z., Wang, L., Yi, K., Liu, Y.: Sampling based algorithms for quantile computation in sensor

networks. In: Proc. of SIGMOD, pp. 745–756 (2011)
22. Huang, Z., Yi, K., Liu, Y., Chen, G.: Optimal sampling algorithms for frequency estimation in distributed

data. In: Proc. of INFOCOM, pp. 1997–2005 (2011)
23. Huang, Z., Yi, K., Zhang, Q.: Randomized algorithms for tracking distributed count, frequencies, and

ranks. In: Proc. of PODS, pp. 295–306 (2012)
24. Karp, R., Shenker, S., Papadimitriou, C.: A simple algorithm for finding frequent elements in streams

and bags. ACM Trans. Database Syst. 28(1), 51–55 (2003)
25. Keralapura, R., Cormode, G., Ramamirtham, J.: Communication-efficient distributed monitoring of

thresholded counts. In: Proc. of SIGMOD, pp. 289–300 (2006)
26. Leung, C., Mateo, M., Brajczuk, D.: A tree-based approach for frequent pattern mining from uncertain

data. In: Proc. of PAKDD, pp. 653–661 (2008)
27. Li, F., Yi, K., Jestes, J.: Ranking distributed probabilistic data. In: Proc. of SIGMOD, pp. 361–374 (2009)
28. Li, M., Liu, Y.: Underground coal mine monitoring with wireless sensor networks. ACM Trans. Sensor

Netw. 5(2), 10 (2009)
29. Liu, C., Chen, L., Zhang, C.: Summarizing probabilistic frequent patterns: a fast approach. In: Proc. of

SIGKDD, pp. 527–535 (2013)
30. Liu, Y., Liu, K., Li, M.: Passive diagnosis for wireless sensor networks. IEEE/ACM Trans. Netw. 18(4),

1132–1144 (2010)
31. Manku, G., Motwani, R.: Approximate frequency counts over data streams. In: Proc. of VLDB, pp. 346–

357 (2002)
32. Metwally, A., Agrawal, D., Abbadi, A.: A simple algorithm for finding frequent elements in streams and

bags. ACM Trans. Database Syst. 31(3), 1095–1133 (2006)
33. Misra, J., Gries, D.: Finding repeated elements. Sci. Comput. Program. 2(2), 143–152 (1982)
34. Schoute, F.: Dynamic frame length ALOHA. IEEE Trans. Commun. 31(4), 565–568 (1983)
35. SAMOS: Shipboard Automated Meteorological and Oceanographic System. http://samos.coaps.fsu.edu/
36. Sun, L., Cheng, R., Cheung, D., Cheng, J.: Mining uncertain data with probabilistic guarantees. In: Proc.

of SIGKDD, pp. 273–282 (2010)
37. Tang, M., Li, F., Phillips, J., Jestes, J.: Efficient threshold monitoring for distributed probabilistic data.

In: Proc. of ICDE, pp. 1120–1131 (2012)
38. Tong, Y., Chen, L., Cheng, Y., Yu, P.: Mining frequent itemsets over uncertain databases. Proc. VLDB

Endow. 5(11), 1650–1661 (2012)
39. Tong, Y., Chen, L., Ding, B.: Discovering threshold-based frequent closed itemsets over probabilistic

data. In: Proc. of ICDE, pp. 270–281 (2012)
40. Tong, Y., Chen, L., Yu, P.: UFIMT: an uncertain frequent itemset mining toolbox. In: Proc. of SIGKDD,

pp. 1508–1511 (2012)
41. Tong, Y., Zhang, X., Cao, C., Chen, L.: Efficient probabilistic supergraph search over large uncertain

graphs. In: Proc. of CIKM, pp. 809–818 (2014)
42. Wang, L., Cheng, R., Cheung, D., Lee, S., Cheng, R.: Accelerating probabilistic frequent itemsetmining:

a model-based approach. In: Proc. of CIKM, pp. 429–438 (2010)
43. Wang, L., Cheung, D., Cheng, R., Lee, S., Yang, X.: Efficient mining of frequent item sets on large

uncertain databases. IEEE Trans. Knowl. Data Eng. 24(12), 2170–2183 (2012)
44. Wang, S., Wang, G., Chen, J.: Distributed frequent items detection on uncertain data. In: Proc. of ADMA,

pp. 509–520 (2010)
45. Yi, K., Zhang, Q.: Optimal tracking of distributed heavy hitters and quantiles. In: Proc. of PODS,

pp. 167–174 (2009)

http://samos.coaps.fsu.edu/

World Wide Web

46. Yi, K., Zhang, Q.: Optimal tracking of distributed heavy hitters and quantiles. Algorithmica 65(1), 206–
223 (2013)

47. Zhang, Q., Li, F., Yi, K.: Finding frequent items in probabilistic data. In: Proc. of SIGMOD, pp. 819–832
(2008)

48. Zikopoulos, P., Eaton, C., Zikopoulos, P.: Understanding Big Data Analytics for Enterprise Class Hadoop
and Streaming Data. McGraw-Hill Press (2011)

	Tracking frequent items over distributed probabilistic data
	Abstract
	Introduction
	Problem formulation
	System architecture
	Problem statement
	Baseline algorithm

	An improved deterministic approach
	Early bounding and pruning
	Complexity of the Bounding

	Local threshold-based update mechanisms
	Basic Idea
	A simple threshold assignment mechanism
	An improved threshold assignment mechanism

	A threshold-based deterministic algorithm

	A sketch-based sampling approach
	Main ideas
	Algorithm description
	Correctness analysis

	Experimental study
	Experimental setting
	Communication cost
	Effect of r
	Effect of
	Effect of t
	Effect of
	Effect of k
	Conclusion

	Related work
	Tracking in distributed probabilistic data
	Tracking in distributed deterministic data

	Conclusions
	Acknowledgments
	References

